
SHOWBACKS

COST ALLOCATION

AWS

AWS Cloud Cost
Allocation: The
Complete Guide

AWS TAGGING

AWS TAGGING

FIXED PROPORTION

TAGGING STRATEGY

VARIABLE PROPORTION

COST ALLOCATION

GUIDE

www.nops.io

Introduction

Unpacking the AWS Cloud Cost Structure
AWS Compute Options
Common AWS Services and Pricing

Fundamentals of Cost Allocation in AWS

AWS Tagging
Tag Types
How to implement a Tagging Strategy
Common Challenges & Tagging Misconfigurations

Showbacks and Cost Allocation
How to Categorize Resources
Various Showback Strategies

Advanced Cost Allocation Strategies
Even Split
Fixed Proportion
Variable Proportion

Container Cost Allocation

Table of Contents
 3.

 4.

16.

33.

www.nops.io 2

23.

13.

37.

To get the most value out of your AWS resources, it is crucial for decision-
makers across business leadership, engineering, product, and finance to
understand what cloud costs are generated and who is generating them.

However, the complexities of dynamic cloud usage make it difficult to have a
complete understanding of your cloud cost. AWS provides a monthly billing file
called the Cost and Usage Report (CUR) which may have hundreds of
thousands, or millions, of rows of granular data on your hourly resource use. In
some cases, such as EC2 instances running Linux, billing is tracked on a per-
second level. With so much information available, you need a method for
translating cost data into business value. Otherwise, it’s impossible to answer
questions like:

Why is the AWS bill $X this month?
Are individual teams and business units using the right amount of
resources?
What value is $Y charge bringing to my organization?
Who is responsible for shared costs?

In the 2023 re:Invent Keynote, Werner Vogels emphasized that unobserved
systems lead to unknown costs. That’s why the FinOps foundation’s first phase
of the journey starts with “Inform”: in other words, visibility and cost allocation.

Introduction

www.nops.io 3

This ebook aims to show you how to allocate
every dollar of your AWS spend. When you
truly understand your cloud costs, you can get
the right information to the right stakeholders —
driving better visibility, accountability, and
strategic decision-making.

About this guide:

https://www.youtube.com/watch?v=UTRBVPvzt9w&t

Unpacking the
AWS Cloud Cost
Structure

www.nops.io 4

AWS currently has over 200 services, with new offerings launched by the month. Its pricing system is notoriously complex, with over 700 instances
just for EC2 alone.

Luckily, a solid grasp of the landscape and most important factors that determine pricing can go a long way in explaining your cloud bill. Here’s the
most important info you need to know about AWS pricing.

Unpacking the AWS Cloud Cost Structure

www.nops.io 01. AWS Cloud Cost Structure 5

The main four types of AWS compute are On-Demand, Reserved Instances (RI), Savings Plans (SP), and Spot. Let’s compare.

1. On-Demand
On-Demand Instances let you pay for compute capacity by the hour or second (minimum of 60 seconds) with no long-term commitments. It is the
most expensive form of AWS pricing.

2. Savings Plans
Savings Plans provide a flexible pricing model offering lower prices than On-Demand pricing in exchange for a specific usage commitment
(measured in $/hour) for a one- or three-year period.

AWS offers three types of Savings Plans: Compute, EC2, and SageMaker.

AWS Compute Options

https://aws.amazon.com/blogs/aws/

www.nops.io 01. AWS Cloud Cost Structure 6

Compute Savings Plans are the most
flexible commitment option. They allow you

to apply usage across Amazon EC2,
(regardless of instance family, size, AZ,

region, OS, or tenancy), AWS Lambda, and
AWS Fargate.

Compute Savings Plans
EC2 SP provides the lowest prices, with
savings up to 72% (compared to 66% for

Compute SP). However, you need to
commit to a specified region and instance
family, though you can change instance

size, OS, and tenancy.

EC2 Instance Savings Plans
SageMaker SP will apply to any ML instance or

size, across any region, without manual
modifications required.

SageMaker Savings Plans

Compute Savings Plans can apply to any instance, maximizing the value and flexibility of the plan you purchase.

Savings Plans offer the flexibility to make infrastructure modifications while still receiving discounts.

A Savings Plan automatically applies to eligible usage, regardless of changes to your infrastructure.

You purchase Savings Plans on a dollar-per-hour basis, not per instance. As a result, SP allows you to purchase compute capacity
for as little as a fraction of a cent per hour - one-tenth of a cent per hour, to be exact ($0.001/hr).

SPs offer multiple payment options, meaning you have the flexibility to pay upfront or monthly (with higher discounts for paying
upfront).

SPs can be scheduled for future purchase, allowing them to apply automatically at a later date (called “queuing”).

SPs “float”, meaning they can be applied not just to the purchasing account, but to other linked AWS accounts.

What are the advantages of using Savings Plans?

Standard RIs offer up to a 75% discount on On-Demand pricing

RIs provide predictable compute power and pricing over a set period of time, ideal for predictable and consistent workloads

Convertible RIs offer the flexibility to change instance size, AZ, scope, and networking type should your needs change. You still
receive a discount, though not as great as for Standard RIs.

Standard RIs (though not Convertible RIs, or RIs obtained at a discounted rate) can be sold in the Reserved Instances
Marketplace, but only for EC2 RIs.

While Savings Plans can only be purchased for EC2, Lambda and Fargate, Reservation models are available for a greater
range of services including EC2, RDS, ElastiCache, OpenSearch, Redshift, and DynamoDB.

What are the advantages of using Reserved Instances?

www.nops.io 01. AWS Cloud Cost Structure 7

3. Reserved Instances
AWS offers two types of RIs: Standard and Convertible. Let’s compare:

Standard RIs offer the highest discount (up to 75% off On-Demand) and are suited to steady-state workloads with predictable usage patterns. They
require a commitment to a specific instance family and region, and you can't modify the instance class or operating system after purchase.

Convertible RIs offer less of a discount than Standard RIs (up to 54% off On-Demand), but allow greater flexibility. If your application's needs
change, you can exchange Convertible RIs for other Convertible RIs to cover different families, operating systems, or tenancies, as long as they are
of equal or greater value.

Standard Reserved
Instances

Convertible Reserved
Instances

EC2 Instances Savings
Plans Compute Savings Plans

Applicable to EC2 only EC2 only EC2 only EC2, Lambda, & Fargate

Commitment term 1 year, 3 years 1 year, 3 years 1 year, 3 years 1 year, 3 years

Best case scenario
savings

75% 54% 72% 66%

Payment Options All Upfront, Partial Upfront,
and No Upfront

All Upfront, Partial Upfront, and
No Upfront

All Upfront, Partial Upfront,
and No Upfront

All Upfront, Partial Upfront, and
No Upfront

Instance Family Fixed Any Fixed Any

Instance Operating
System

Fixed Any Any Any

Instance AZ Any (Regional), Fixed
(Zonal) Any Any Any

Instance Tenancy Fixed Any Any Any

Need to reserve
capacity?

Any (Regional), Fixed
(Zonal) No No No

Reserved Instances versus Savings Plans
Here is a quick comparison of some common commitment options to consider.

www.nops.io 01. AWS Cloud Cost Structure 8

SP & RI commitments can’t cover spikes. Savings Plans and Reserved Instances are ideal for a steady and predictable
compute spend level. You’ll commit to using the agreed capacity per hour. If you exceed this usage, AWS will bill this extra usage
at the higher On-Demand rate.

Use it (all the time) or lose it. Savings Plans and Reserved Instances apply on an hourly basis, meaning that you’ll need to get
fairly granular in your breakdown. If you commit to $10 per hour but only consume $6 of services in any hour, you will lose the
remaining $4, known as unused commit.

Forecasting the exact amount you will need is difficult to do. In the dynamic world of cloud infrastructure, systems are
constantly evolving — your team is constantly modernizing and rightsizing, so the overall cloud cost fluctuates.

Ultimately, it comes down to the following dilemma: if you commit too heavily, every hour you’re paying for unused commit. But if you
under-commit, you’ll have to pay the On-Demand premium for additional resources.

What are the disadvantages of using Savings Plans & Reserved Instances?

www.nops.io 01. AWS Cloud Cost Structure 9

4. AWS Spot
AWS Spot Instances are spare AWS capacity that users can purchase at a heavy discount. It allows AWS to monetize idle time in their data center
by offering it on the Spot market.

Spot can be challenging to utilize from an engineering standpoint. AWS gives you a discount on the instance, but without a guarantee that you’ll be
able to use it for the duration of your compute need.

AWS can terminate these instances with a two-minute warning (known as a Spot Instance Interruption).

The Spot Instance can be terminated if:

The Spot price increases above the maximum price that you're willing to pay per hour per instance
Capacity is no longer available
The Spot request has constraints that can't be met

[source: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/interruption-reasons.html]

These unexpected interruptions can cause workloads to fail, potentially posing a major problem for production or mission-critical applications. That’s
why many companies avoid using Spot, despite the significant potential cost savings.

To reduce the chance of Spot interruptions, it’s important to have diversity in your instance selection pools. Because each instance family and
instance size, within each AZ, for every Region, is a separate Spot pool, having more instance options to run your application helps optimize Spot
usage. We recommend a minimum of 5 instance families (inclusive of different generations), and encourage even more, provided the instances can
handle the workloads.

The other challenge of using Spot is knowing the right amount to use with your existing Reserved Instance and Savings Plan commitments to
maximize savings. While it is complex and time-consuming to continually analyze and rebalance your usage, automated solutions can help you cost-
optimize your workloads without manual effort.

www.nops.io 01. AWS Cloud Cost Structure 10

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/interruption-reasons.html
https://www.nops.io/compute-copilot/

While AWS pricing is extremely complex and constantly changing based on demand and other factors, there are some key factors and
considerations that determine overall pricing. Let’s break down the most common AWS services and what you need to know.

Common AWS Services and Pricing:

Service What it does Main factors that determine pricing

EC2

Provides virtual machines (EC2
instances) for running applications,
offering full control over the
operating system and configuration.

Instance type (these are optimized to fit different use cases, and comprise
varying combinations of CPU, memory, storage, and networking capacity)
Number of instances and instance duration
Pricing model (On-Demand, Reserved Instance, Savings Plan, Spot)

Elastic Container
Service (ECS)

Manages the deployment and
scaling of containerized
applications using Docker

No additional charge for ECS — you pay only for AWS resources (for
example, EC2 instances or attached EBS volumes) to run your application
With Fargate, you pay for the amount of vCPU and memory resources that
your containerized application requests

Elastic Kubernetes
Service (EKS)

Offers a managed Kubernetes
service for container orchestration

$0.10 per hour for each Amazon EKS cluster that you create
You pay for AWS resources (for example, EC2 instances or attached EBS
volumes) created to run your Kubernetes worker nodes

Simple Storage
Service (S3)

Serves as a highly scalable object
storage service for data storage
and retrieval

Storage class (these are optimized to fit different use cases, such as
general-purpose storage of frequently accessed data, intelligent-tiering for
data with unknown or changing access patterns, etc.)
Number and size of objects stored
Quantity and type of requests and data retrieval
Data transfer between regions

www.nops.io 01. AWS Cloud Cost Structure 11

Service What it does Main factors that determine pricing

Relational Database
Service (RDS)

Provides managed
relational database
services

Database instance hours
Database characteristics (vary depending on the database engine, size, and
memory class)
Pricing model (On Demand or Reserved)
Number of database instances
Provisioned and additional storage
Outbound data transfer

Elastic Block Storage
(EBS)

Provides block-level
storage volumes that can
be attached to EC2
instances.

Volume storage (charged by the amount of GB you provision per month)
Snapshots (the amount of space your data consumes in Amazon S3)
Data transfer
Additional charge for EBS volumes that support additional input/output operations
per second (IOPS) and throughput beyond baseline performance.

Lambda
“Serverless”, i.e. runs code
without provisioning or
managing infrastructure

Number of requests: 1 million free, then $0.0000002 per request thereafter
Duration: 400,000 GB-seconds per month free, then $0.00001667 for every GB-
second used thereafter
Data transfer

Fargate

Runs containers without
having to manage servers
or clusters of Amazon EC2
instances

vCPU
Memory
Operating Systems
CPU Architecture
Storage volumes attached to containers

www.nops.io 01. AWS Cloud Cost Structure 12

Fundamentals of
Cost Allocation in
AWS

www.nops.io 13

Spending money on the cloud is not a problem, but wasting money is. But how do you know how much money you are wasting? How do you make
sure every dollar of your AWS bill is accounted for?

Optimizing cloud costs often starts with addressing the key issue of limited visibility into expenses. Without clear insights, it's hard to identify what and
how much to cut. Key challenges typically include:

It’s difficult to attribute shared costs to individual teams and business units
It’s difficult to forecast spending and stay within the budget
More visibility is needed to investigate unexpected charges or spikes in usage

Step one is to connect the functions of your business to what you’re spending in AWS each month. The goal is to fully allocate, analyze, and report
cloud costs so that you understand how resources are being used and by whom. This contextualization, whether it's through different environments,
business units, or teams, allows you to organize and understand your spending better.

Better visibility into your organization’s cloud spend and more granular cost and usage reporting provides actionable insight into where you are
spending the most money — as well as opportunities for cost optimization.

It makes teams or business units accountable and answerable for their own cloud usage. Who is spending in the cloud? What are they spending
money on? What value are you getting for the cost? With cost allocation, all of these questions are possible to answer.

Let’s go over some fundamental terms relating to AWS cost allocation.

Fundamentals of Cost Allocation in AWS

www.nops.io 02. Fundamentals of Cost Allocation in AWS 14

Chargebacks: Type of cost allocation in which the costs
of cloud services and resources are billed to the
business units or teams that use them.

Showbacks: Type of cost allocation in which the costs
of cloud services are reported to the business units or
teams that used them (but not billed).

Cost Allocation: The process of identifying and
assigning the costs of shared cloud resources and
services to different projects, applications, users or
teams within an organization.

Cost and Usage Report: The Cost and Usage
Report (CUR) provides a detailed breakdown of your
cost and usage of AWS services. It can contain
millions of lines depending on the scale of your AWS
infrastructure, which can be broken down into time
frame, service, resource, and user-defined tags.

Tags: Simple metadata attached to resources in order
to make them easily identifiable. If your AWS account
has hundreds or thousands of resources, tags help
you to categorize, filter and organize depending on
different criteria such as project, environment or
purpose.

www.nops.io 02. Fundamentals of Cost Allocation in AWS 15

Common AWS Services and Pricing:

AWS
Tagging

www.nops.io 16

www.nops.io 03. AWS Tagging 17

Category Tag Type Purpose

Technical

Name Identifies an individual resource

Environment/Lifecycle Specifies the environment in which the resource is operating, such as Development,
Testing, Staging, or Production

Application ID A unique identifier for the application the resource is part of

Application Role Describes the role or function of the resource within an application, such as Web
Server, Database, or Cache

Cluster Identifies cluster to which tag belongs

Version Indicates the version of the software or application running on the resource

Tag TypesAmazon Web Services lets customers label their resources with tags, comprising a user-defined
key and an optional value. These tags can help you manage, identify, organize, search for, and
filter resources by criteria like purpose, owner, project, or environment.

Tagging is immensely helpful for the categorization and allocation of cloud costs. While this
section articulates the importance of tagging, and some strategies around it, understand you can
still allocate costs while your tagging implementation remains a “work in progress.” There is other
metadata that can be used in conjunction with the tagging you do have, to properly split up your
cloud spend.

AWS Tagging

AWS categorizes tags into 4 groups:
Technical, Automation, Business, and
Security. Let’s take a look at the most
important types of tags used for cost
allocation.

https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html

Category Tag Type Purpose

Automation

Date-Time
Used to record timestamps related to the resources: when a resource was or
should be started, stopped, deleted, or rotated

Opt in
Indicates whether a resource is opted into certain automated processes, such as
starting, stopping, or resizing instances

Business

Project Associates resources with a specific project

Team/Business Unit/Department
Assigns the responsibility for the resources to a Team, Business Unit, or
Department

Owner
Entered as a name or email address, this assigns the specific person who
created (or updated) the resource

Customer/Client
The customer/client for which the resources are needed, and possibly charged
back to.

Billing Code/Cost Center
For use in chargeback and showback, this helps the Finance and Accounting
groups allocate costs for the business.

Security

Confidentiality
Indicates the level of sensitivity of the resource, such as Public, Internal, or
Confidential

Compliance
Identifies whether a resource needs to adhere to specific regulatory standards,
such as HIPAA, PCI-DSS, or GDPR

www.nops.io 03. AWS Tagging 18

Start by using the service console, API, or the AWS Tag Editor to manage tags for
individual or multiple resources. Early implementation of tags is crucial, as resources
cannot be retroactively tagged. Choose between user-defined tags for customized
tagging or AWS-generated tags for standard categorizations, or a combination of both
for flexibility.

Once you create your tags, you need to activate them in the Billing and Cost
Management console. Once you have activated your tags, you can utilize AWS Cost
Explorer to dissect costs by tags and attribute AWS costs accurately across various
dimensions like project, team, or customer.

The following table covers the differences between AWS-created, User-created or
Vendor-created tags and how to use them.

How To Implement A Tagging Strategy?

www.nops.io 03. AWS Tagging 19

https://docs.aws.amazon.com/tag-editor/latest/userguide/tag-editor.html
https://aws.amazon.com/aws-cost-management/aws-cost-explorer/
https://aws.amazon.com/aws-cost-management/aws-cost-explorer/

Source Type Description How to activate Keep in mind:

AWS-defined
tags

The 'createdBy' tag is an AWS-defined tag
used for cost allocation. It captures data from
specific API or console events, aiding in the
accounting of otherwise uncategorized
resources. These tags are generated and
managed automatically by AWS and are
exclusively available in Billing Consoles and
reports.

Go to the AWS Billing Console1.
Choose cost allocation tags in
the navigation pane

2.

Choose the ‘created3.
By’ tag option under the AWS-
generated cost allocation tags
section

4.

Click on Activate5.

Management account access is required
You cannot edit, update, or delete AWS-
defined tags
A maximum of 500 active tag keys are
allowed
The reserved prefix for these tags is
“aws:”
Null tag values are omitted in Cost
Explorer and AWS budgets.

User-defined
tag

User-defined tags in AWS are customizable
tags that you create, define, update, and apply
to AWS resources for detailed cost allocation.
These tags will be visible on the AWS console
after enabling Budgets, AWS Cost and Usage
Reports (CURs), and Cost Explorer.You can
use the AWS Tag editor, AWS Management
Console or your API to create, update, and
apply user-defined tags to different
resources.

Go to the AWS Billing Console1.
Choose cost allocation tags in
the navigation pane

2.

Choose the user-defined tags
you want option under the AWS-
generated cost allocation tags
section

3.

Click on Activate4.

It may take up to 24 hours for these tags
to reflect in cost allocation reports after
application.
User-defined tags typically use a 'user:'
prefix.
Only one key is allowed per resource.
Be mindful of tag naming restrictions.

Vendor-
provided tags

Some AWS vendors can also create tags
and associate the tags with their specific
software usage.

Navigate to the Billing and
Cost Management console.

1.

Activate the relevant tags.2.

These do not count toward your total
tag per resource quota
They have the prefix
“aws:marketplace:isv”

www.nops.io 03. AWS Tagging 20

Implement a robust tagging strategy that sets out categories of tags; description of the tag, its purpose, and when to use it; and
example tag values.

Use a standardized, case-sensitive format for tags that you apply consistently across all resource types. To ensure a consistent and
enforced tagging strategy, follow AWS Tag Policies.

Use automated tools such as Tag Editor to help manage resource tags, making it easier to automatically manage, search, and filter
tags and resources. Also use AWS Config to require tags and report resources without them.

Use too many tags rather than too few tags — you want to have as few untagged resources as possible for an accurate cost picture.
AWS allows for up to 50 user-generated tags per resource.

Ensure that tags are assigned as close to the creation of the resource and source data as possible, so that they are passed with cost
and usage data to downstream systems.

www.nops.io 03. AWS Tagging 21

As you create and implement your tagging initiative, keep the
following best practices in mind:

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_tag-policies.html
https://docs.aws.amazon.com/config/latest/developerguide/required-tags.html

As you design your tagging strategy, it’s also worth keeping in mind some of the common challenges that may arise.

Lack of Standardization. Inconsistent tagging practices can make managing and identifying resources difficult, leading to
errors and mismanagement. Even when organizations have standardized tagging practices, enforcing them can be difficult. It is
common for users to forget to add tags, use incorrect tags, or use different tags for the same type of resource. For a tag about
“production,” departments can use “prod,” “production,” “PROD,” “prod1,” or any other number of variations.
Undefined Resources: Some resources cannot be assigned tags, such as business support and bandwidth costs. As a result,
it can be difficult to allocate these costs to the right resources or cost centers, leading to inaccurate cost allocation and potential
budget overruns.
Shared Cost Allocation: Your AWS bill contains various line items, such as purchasing a saving plan or incurring bandwidth
costs for business support. These costs are not associated with a particular resource or a particular team, making it difficult to
allocate them accurately.

Tip: free tools can help you automatically tag resources and fix mis-tagged resources.

www.nops.io 03. AWS Tagging 22

Common Challenges & Tagging Misconfigurations

https://www.nops.io/business-contexts-overview/

Showback and
Cost Allocation

www.nops.io 23

It’s hard to talk about cost allocation without showbacks to layer business context over your AWS spend — let’s break down what exactly they are,
how to use them, and compare various approaches.

What is a showback? What is a chargeback?
Showback is an informative approach where users are shown (but not billed for) the costs associated with their IT consumption. It's quick and
administratively simple to implement, often serving as a precursor to a full chargeback system.

Showback improves accountability by highlighting the services consumed, allowing users to understand and potentially challenge their IT usage
before any actual billing takes place. It focuses on the outputs of IT services rather than the inputs like infrastructure or labor.

On the other hand, chargeback is a financial approach where users or departments are actually billed for their IT usage, turning IT into a cost
center. This method requires more robust financial processes and often leads to a more cost-conscious culture within an organization as
departments are directly accountable for their IT expenditure. Implementing a chargeback system is more complex and takes longer to put into use.

In this ebook, we’ll focus on Showbacks and how to implement them.

Showback and Cost Allocation

www.nops.io 04. Showback and Cost Allocation 24

Here is the basic outline of creating Showbacks for AWS spend. We’ll cover break down these high-level principles in more detail
throughout this chapter.

Define the scope, i.e. which cloud services the model will cover and which business units it will apply to.1.
Assign account owners for each cloud service to monitor and track their business units’ usage, generate usage reports, and
present them to their business units.

2.

Establish tracking mechanisms such as tags, billing accounts, and organization units. 3.
Distribute shared costs to the remaining Showback Values to allocate costs more accurately.4.
Create usage reports with information about your business units’ usage of each cloud service, including the amount of usage, the
type of usage, and the costs.

5.

Present the AWS Showback reports to departments or project heads to make them aware of the cloud resources being consumed,
promoting greater cost awareness, financial responsibility, and alignment between finance and operations. These include usage
reports, cost reports, service mix reports, and service dependency reports.

6.

How To Create AWS Showbacks?

www.nops.io 04. Showback and Cost Allocation 25

Before allocating costs to Showback values (sometimes referred to as “buckets”), there should be some planning done around the hierarchy of
values to group by.

Here are a few different ways of categorizing your resources to get the most out of Showbacks.

Tags are the most recognized method of grouping assets. Key-value pairing is often the only way to create showback for older accounts
that have mixed resources within them. Strategies have evolved in the world of segmentation of data, but tags have been a constant.

Organizational Units (OUs) are a great way to create a separation at the account group level. One way of implementing this is to have
pre-prod, prod, qa, and disaster recovery accounts for one entity in its own OU. That entity could be a product or application, a line of
business, or a department. One example would be OUs based on a Product line.

How To Categorize Resources?

Organization Name Account Name

Widgets

Widgets Dev

Widgets Prod

Widgets Staging

Sprockets

Sprockets Dev

Sprockets R&D

Sprockets Prod

www.nops.io 04. Showback and Cost Allocation 26

Account Name - this goes hand in hand with an OU structure, but doesn’t necessarily require creating OUs. More often than not,
companies are leveraging AWS’s feature of a canonical account name as a standard practice. Depending on the need, this can be enough
information for solid Showback reporting.

Resource Name - much like the account name, a naming convention on resources can empower companies to create rich, detailed
Showback reports. Some companies go so far as to create a multi-component naming convention. For example, the first 3 letters of the
resource name might indicate the application. The second part could indicate a 2 digit numeric code to identify if it is production, dev, DR,
etc. The third part might consist of 4 alphanumerics denoting the function such as webserver, back-end database, credentialing, and so on.
This type of strategy requires an initial time investment, but it means that any engineer can look at the name of the resource and
immediately know what it does.

A resource can only live in one Showback value. And, because this is a rule-based mechanism, the order in which you allocate your costs
matter.

For example, resources tagged with Environment: Production can span across accounts. Do you want to allocate costs based firstly by account
and secondly by tag? Or does the tag reign supreme, regardless of which account the resource lives in? What if a resource is named
sprockets-webserver-prod, but is tagged Environment: Staging? Which bucket does it truly belong to? These are key considerations when
determining your cost allocation strategy.

Organization Name Account Name

Doodads
Doodads Non-Prod

Doodads Prod

www.nops.io 04. Showback and Cost Allocation 27

All of this metadata can be used together to create a cogent method of allocating costs. With the nOps feature of Showbacks, it can be done in a
few simple clicks. As tags are so prevalent today, it’s a common practice to start with a well-applied tag.

Simply give a name to your Showback and select a tag to start with, though you can skip the tag and use other metadata if you prefer.

www.nops.io 04. Showback and Cost Allocation 28

By selecting a tag, nOps will automatically gather tagged resources into a Showback Value. You can use the filters on the left to quickly identify
unallocated resources.

www.nops.io 04. Showback and Cost Allocation 29

This collection of costs can then be put fully into a Showback value or distributed across the other values. The latter concept is known as shared
cost allocation, which we’ll talk about later.

After a few rounds of cleanup, you should have a well-allocated Showback. Generally speaking, to clean-up what wasn’t originally tagged, you can
leverage other tags that may mean the same thing or help identify where resources belong.

As an example, if the tag we start with is Application, there may also be a key of App that was applied outside of standard practice (or
standardization is a work in progress).

From there, you can start to look at Owner. In many companies, an owner will only be working on one application, so looking for
Owner:DeveloperJane can find resources to allocate to the Sprockets bucket.

www.nops.io 04. Showback and Cost Allocation 30

In terms of the type of cost you want to allocate, there are primarily three different methods of allocating and presenting showback costs. Let’s
compare.

1. Amortized Cost:
Amortized cost involves spreading the expense of a particular resource or service over a defined period. Instead of charging the full cost upfront, it is
divided into equal or proportional portions across multiple time periods.

This approach is often used for costs associated with long-term assets or investments. By amortizing costs, it becomes possible to allocate the
expense more evenly and accurately over time, aligning with the benefits or usage of the resource. It can also help provide a more predictable and
manageable cost structure.

2. Blended Cost:
Blended cost refers to a combined or averaged rate used to represent the overall cost of a service or resource. It involves aggregating multiple cost
components into a single value. This approach simplifies the cost allocation process by presenting a consolidated cost that encompasses various
factors. The individual cost components may include things like infrastructure costs, labor costs, software licenses, maintenance fees, and other
associated expenses.

Blended cost provides a straightforward and easily understandable cost value, which makes it convenient for comparison and decision-making.

Various Showback Strategies

www.nops.io 04. Showback and Cost Allocation 31

3. Unblended Cost:
Unblended cost represents the detailed, itemized breakdown of all cost components associated with a specific service or resource. Instead of
combining different cost factors, unblended cost provides transparency by presenting each cost component separately. It offers a granular view
of the underlying expenses, allowing stakeholders to understand precisely how costs are derived. This breakdown can include individual
resource costs, usage fees, data transfer charges, storage costs, and any other relevant cost elements.

Unblended cost provides a higher level of detail and accuracy, enabling more in-depth analysis, optimization, and cost attribution.

4. Allocating shared cost
Allocating cost is easy when the costs for a particular application or service have a single owner. However, some cloud costs (“shared costs”)
cannot be assigned to a single business unit, application or cost center. These include data transfer costs, AWS Support fees, third party SaaS
tools and services, custom built internal services, and network costs.

In the shared cost scenario, fairly dividing costs is more challenging. In the next chapter, we’ll go through some advanced strategies for
handling such situations.

www.nops.io 04. Showback and Cost Allocation 32

Advanced
Cost Allocation
Strategies

www.nops.io 33

Department Percentage Split Original Spend Shared Costs Total Spend

Sales 25% $50,000 $10,000 $60,000

Marketing 25% $50,000 $10,000 $60,000

Engineering 25% $250,000 $10,000 $260,000

Product 25% $150,000 $10,000 $160,000

Total 100% $500,000 $40,000 $540,000

Any significant cloud-based organization will have costs that need to be split and allocated across multiple teams and business owners. Sharing
cloud resources can increase scalability and efficiency. By procuring cloud infrastructure on a large scale, organizations benefit from lower unit
costs through discounts and strategic purchasing.

However, for maximum efficiency, these costs should be reallocated to the specific business segments responsible for their usage. Effective
tagging and allocation of shared costs are essential to prevent cost overruns and ensure proper management of shared cloud expenses.

According to the FinOps foundation, there are three common methods for splitting up costs:

Advanced Cost Allocation Strategies

www.nops.io 05. Advanced Cost Allocation Strategies 34

This strategy splits the total amount of shared costs evenly among departments (or Showback values).

1. Even split:

https://www.finops.org/wg/identifying-shared-costs/

In this example, the shared costs of $40,000 are split evenly across the remaining Showback values. While this strategy is the simplest to implement,
the disadvantage is that individual departments have no incentive to make their cloud consumption more efficient.

www.nops.io 05. Advanced Cost Allocation Strategies 35

This strategy splits shared expenses in accordance with a relative, defined percentage of costs, usage, or some other set metric.

For example, say that you have analyzed historical usage and determined that sales generally incurs 20% of fixed costs, marketing 15%, and so on.

2. Fixed/Custom Percentage:

Department Percentage Split Original Spend Shared Costs Total Spend

Sales 20% $50,000 $8,000 $58,000

Marketing 15% $50,000 $6,000 $56,000

Engineering 45% $250,000 $18,000 $268,000

Product 20% $150,000 $8,000 $158,000

Total 100% $500,000 $40,000 $540,000

In this example, the shared costs of $40,000 are split across the remaining Showback values in accordance to the specified shared cost portion.

This strategy attempts to more fairly allocate costs, while keeping calculations simple. However, the disadvantage is that it does not account for
changing usage patterns.

This is the most advanced strategy, used by organizations with mature FinOps practices. It allocates shared costs based on relative percentage of
costs, usage, or some other metric which is routinely used for determining the split of spend.

This method generally requires an advanced monitoring, tagging and cost allocation solution to effectively implement.

3. Variable Proportion:

www.nops.io 05. Advanced Cost Allocation Strategies 36

https://www.nops.io/business-contexts-overview/

Container Cost
Allocation

www.nops.io 37

$
$

$

$

The rapid adoption of containers in modern cloud architectures has added a significant amount of complexity to financial management. In this
chapter, we’ll talk about the challenges that containers pose to cost allocation, and how to gain visibility into your container costs.

Container Cost Allocation

Containers are becoming increasingly popular for deploying software applications, due to advantages such as application consistency across
different environments, improved resource efficiency compared to traditional virtual machines, and improved scalability and management.

However, the nature of containerized environments poses challenges to cost visibility and cost allocation. Mapping the cost of resources one-to-one
back to specific teams, products or features with tags or labels is not possible, because workloads share resources. A resource may be running
multiple containers, each of which may support a different application or cost center. As a result, many teams don’t have a good understanding of
container costs and how to allocate them.

The Complexities of Container Costs

www.nops.io 06. Container Cost Allocation 38

Let’s start by briefly outlining the structure of an EKS cluster and the key terms necessary to understand container cost allocation.

Container Orchestration basics

www.nops.io 06. Container Cost Allocation 39

Cluster A collection of nodes that run containerized applications.

Server Instance/Node A single machine within a cluster, such as an EC2 instance.

Namespace A way to divide cluster resources between multiple users through a virtual abstraction. Each namespace can contain
resources such as pods, services, and deployments, and serves to isolate these from resources in other namespaces.

Pod
A group of containers, treated as a single block of resources for scheduling and scaling. The pod is the smallest
deployable unit in Kubernetes.

Container A lightweight, stand-alone, executable package that includes software and all of its dependencies. Containers are
isolated from each other and the host system, ensuring consistent operation across different computing environments.

Pod Labels
Labels are key-value pairs used to organize and select groups of pods within a namespace, facilitating management
and resource allocation.

What is Container Cost Allocation?
Container cost allocation is the process of identifying and assigning the costs associated with running containers in a cloud-based cluster
environment to specific teams, projects, or departments within an organization by containers. This cost allocation is crucial for organizations that
utilize containerized applications within shared clusters, as it ensures transparent and fair billing based on actual resource usage.

www.nops.io 06. Container Cost Allocation 40

In a cluster, costs are incurred from the moment a node is created, which includes the resources such as CPU, memory, storage, and networking
required to support the node. To ensure fair billing, it is essential to accurately track how much of the node's resources each container utilizes. This
tracking allows for the proportional allocation of the node's total costs to each container based on its resource consumption.

Beyond the direct costs of the server instances, container cost allocation also involves understanding and accounting for the ancillary costs
associated with maintaining and managing the cluster, such as networking, storage, load balancing, monitoring, and the management layer.

Container cost allocation comes with some challenges, including:

Resource sharing. When EKS, multiple containers and services may share the same underlying resources, such as CPU and memory, across
different pods and containers. This shared ecosystem complicates the tracking and allocation of costs, as the resources are not dedicated to a
single container or service. That means that tagging is not as simple as mapping one-to-one, and there’s not an easy way to map these charges
to specific container usage.

The dynamic nature of containerization. Containers are constantly created, scaled, and terminated in response to application demands. This
fluidity presents a challenge in tracking resource usage over time, as the footprint of a container can change rapidly and frequently. Workloads
can be rescheduled across instance types, zones or regions, making it complex and difficult to accurately keep track of these changes.

The way AWS pricing works. AWS discounts such as Reserved Instances and Savings Plans apply hourly, on a use-it-or-lose-it basis, to the
usage that will result in the highest discount. This adds a layer of complication to accurately tracking and calculating container costs.

www.nops.io 06. Container Cost Allocation 41

How to allocate Container costs
Let’s discuss the steps required to successfully allocate your container costs.

Implement a robust labeling and namespace strategy. Use tags to label all of your cloud resources with metadata that identifies the owner
(team, department, project) and the environment (production, development, staging). Tags can include information like CostCenter, Project, or
Environment.

1.

Determine resource utilization. Track resource consumption with resource management and monitoring tools. Tools like Kubernetes' built-in
resource metrics or third-party solutions like Datadog, Prometheus, or Grafana can provide detailed insights into resource usage. Determining
resource utilization can be complex; you might decide to base it off of CPU utilization, memory usage, or some combination of the two. Besides
the cost of the core clusters, it's important to consider container management costs, edge services (such as load balancers), licensing costs,
backup and data retrieval costs, observability costs, and security costs.

2.

Decide whether to base utilization on requests or actual consumption. According to the FinOps foundation, each method has its pros and
cons.

3.

www.nops.io 06. Container Cost Allocation 42

Resource Requests Actual Usage

Advantages
Allocate all costs
Incentivize teams to only provision what they need
There are tools to help! (e.g. Vertical Pod Autoscaler)

Each team / app only pays for what they use

Challenges

Some organizations are not using resource request
fields yet
May also incentivize under-specifying requirements

Who pays for the rest (idle time / cycles)?
What do we do about overprovisioning?
Can incentivize teams to provision more just in case, and not pay
for it
Can set unrealistic goal of 100% utilization

Source: FinOps Foundation

https://www.finops.org/wg/calculating-container-costs/

4. Address Static and Runtime costs. Static costs are the expenses associated with maintaining the infrastructure required to run containers,
regardless of the containers' actual runtime. You have to consider how static costs affect the CPU, Network, and Storage when deployed. Examples
of static costs in a containerized environment include:

Cluster Infrastructure: The cost of the underlying physical or virtual machines (nodes) that form the cluster, including costs for reserved
instances or dedicated hosts that are paid for regardless of usage.

Database Costs: Persistent storage costs for container images, configuration files, or databases needed by your applications, which are incurred
even when containers are not actively running.

Networking Infrastructure: Fixed networking costs such as dedicated load balancers, VPNs, or static IP addresses that are necessary for the
cluster's operation.

Licensing and Subscriptions: Fees for any software licenses, management platforms, or support contracts required for container orchestration,
monitoring, and security, which are typically not dependent on the number of containers or their usage.

Runtime costs are variable expenses that depend on the actual usage of resources by running containers. These costs fluctuate based on the scale,
performance, and efficiency of the containerized applications. Managing runtime costs, on the other hand, requires optimizing container efficiency,
scaling strategies, and monitoring to ensure that resources are used effectively based on demand. Runtime costs include:

Compute Resources: The cost of CPU and memory utilization (EC2, EBS, etc).

Dynamic Storage and I/O: Costs associated with read/write operations and dynamic provisioning of storage volumes used by running
containers, which can vary significantly based on the application workload.

Network Traffic: Expenses related to outbound data transfer or bandwidth utilization by running containers, especially important for applications
with high external network traffic.

www.nops.io 06. Container Cost Allocation 43

Container Orchestration and Management: Operational costs associated with deploying, managing, and scaling containers in real-time,
including the cost of automation tools and additional compute resources required for orchestration services.

For many organizations, it may not be worth building a dedicated proprietary system to handle your Kubernetes cost allocation, requiring significant
time expenditures, a deep understanding of your resources and services, and deep expertise in Kubernetes.

Use an Existing Tool to Allocate your Container Costs
If your EKS spending is currently a black box, you can achieve precise EKS cost allocation at the container level with nOps.

nOps automatically and continuously analyzes your clusters and AWS CUR data to map your costs with complete accuracy, and link them back to
the individual business units producing them.

www.nops.io 06. Container Cost Allocation 44

nOps Showback Dashboard highlights your shared costs.

Easy integration of your various metadata
EKS containers do not have AWS tags, but they can use Kubernetes labels. nOps Business Contexts automatically combines and integrates your
existing tags and labels, making it easy to assign container spend to existing tags or showback values through your existing tagging infrastructure. As
a result, it’s quick and easy to start setting billing rules and allocate costs based on your unified AWS ecosystem.

Deep integration with showbacks
It is critical for product, finance, and engineering teams to be able to track service delivery costs by customer, product or feature. Container costs are
fully integrated with showbacks making it easy to gain the visibility you need for budgeting, forecasting, accountability, and calculating business
value.

www.nops.io 06. Container Cost Allocation 45

Business Contexts is your complete solution for Cost Allocation
and visibility
nOps Container Cost Allocation is integrated into Business Contexts, a complete solution that makes it easy to understand your AWS spending. It
continuously, fully, and automatically allocates your AWS cost, handles tag misconfiguration, and spreads shared cost to multiple teams and
business units for better accountability.

There’s no need for any other tools or services to gain visibility into your cloud costs. nOps transforms your CUR from millions of lines of data into the
who, what, when and why of cloud spend.

See the hourly costs associated with each container, pod, and service within your clusters. You can slice spending by relevant dimensions such as
workload, environment, resource type, team, pricing type, and more. Intuitive filters make it easy for engineering, finance, and business leaders to
gain the insights they need, whether it’s pinpointing the workload spiking your EC2 bill or fairly splitting shared costs.

Understand your real hourly costs

It can be very difficult to understand the real-time impact of your commitments (Reserved Instance or Savings Plans) on the operational costs of your
containers — these financial mechanisms are applied at runtime and reflected only when the bill is generated.

nOps Business Contexts automatically tracks your organization-wide commitments, showing you real hourly container costs after commitments are
applied (amortized costs).

www.nops.io 06. Container Cost Allocation 46

nOps is entrusted with over a 1.5 billion dollars of AWS spend, and was recently ranked #1 in G2’s
cloud cost management category. Learn more about the nOps cloud optimization platform by
booking a demo today!

Book a Demo

Click amortized view to see your real post-RI and SP costs

https://www.nops.io/get-started/
https://www.nops.io/get-started/
https://www.nops.io/get-started/

