
ECS Cost
Optimization: The
Complete Guide

EBOOK

www.nops.io

2

Introduction

ECS: The Basics

What is AWS ECS?

ECS vs. Traditional Container Management

ECS vs. EKS: A detailed comparison of benefits & costs

ECS pricing

Key Strategies for ECS Cost Optimization

Monitoring

Right-Sizing ECS Resources

Effective Auto Scaling

Scheduling resources

Optimizing your commitments

Spot Instances and Fargate Spot

About nOps

Table of Contents

www.nops.io 2

03.

04.

13.

10.

31.

 1 “ Greene, T. (2023). The hidden costs of cloud and where to find overspending. Forbes. Retrieved Feb 1 2024, from
https://www.forbes.com/sites/forbestechcouncil/2023/01/19/the-hidden-costs-of-cloud-and-where-to-find-overspending

Many organizations are currently overspending on the cloud, with EC2 likely the most expensive item on your AWS bill. AWS ECS (Elastic Container
Service) is the most widely-used EC2 container orchestration service. However, it presents some unique challenges for cost-optimization —
particularly if you’re using advanced strategies like running on Spot.

That’s why we wrote this highly comprehensive guide, based on the insights we learned from managing $1.5 billion in AWS spend. We’ll cover
everything you need to know about pricing strategies, best practices for scaling, and implementing ECS cost-optimization strategies.

This practical guide will focus on actionable tips, how-to guides, screenshots, and the other critical info you need to start saving on your ECS costs.

www.nops.io 3

Introduction

[1]

[1]

https://www.forbes.com/sites/forbestechcouncil/2023/01/19/the-hidden-costs-of-cloud-and-where-to-find-overspending

ECS: The
Basics

www.nops.io 4

01. What is AWS ECS?
AWS Elastic Container Service (ECS) is a highly scalable, high-performance container management service that supports Docker containers and
allows you to run applications on a managed cluster of Amazon EC2 instances easily. ECS eliminates the need to install, operate, and scale your
cluster management infrastructure.

02. What are the key components of AWS ECS?

www.nops.io 01. ECS: The Basics 5

Clusters
A cluster is a collection of EC2 instances that together run containerized applications. Each cluster defines the computing environment for its
containers.

Tasks and Services
Task Definitions: These are blueprints for your application that define how containers should be deployed. They include container
definitions, volumes, and networking information.
Services: They maintain a specified number of instances of a task definition simultaneously in a cluster. If a container instance fails, the
service scheduler launches another instance to replace it, maintaining the desired instance count.

Container Agent
A piece of software that runs on each container instance within a cluster. It sends information about the instance’s current running tasks and
resource utilization to ECS, and starts and stops tasks whenever it receives a request from ECS.

www.nops.io 01. ECS: The Basics 6

ECS architecture
diagram illustrating
the relationship
between Clusters,
Task Definitions,
and ECS Scheduler.

Let’s briefly outline the difference in approach between ECS and traditional container management.

03. ECS vs. Traditional Container Management

Feature AWS ECS Traditional Container Management

Setup and Scaling Automates and simplifies container orchestration, easy to scale
based on demand

Manual — meaning scaling can be complex and
resource-intensive

Resource Optimization Optimized for AWS resources — high-density container packing for
efficiency Depends on underlying infrastructure

AWS Integration Deep integration with AWS services like IAM for security, VPC for
networking, CloudWatch for logging and monitoring Requires third-party tools for integration

www.nops.io 01. ECS: The Basics 7

While both AWS Elastic Container Service (ECS) and Elastic Kubernetes Service (EKS) offer robust solutions for container orchestration, they differ
in terms of architecture, ease of use, scalability, and integration capabilities. Let’s compare.

04. ECS vs. EKS: A detailed comparison of benefits & costs

ECS Architecture EKS Architecture

Designed as a proprietary AWS solution. Based on Kubernetes, an open-source system

Integrates deeply with other AWS services. Provides more flexibility with community-driven plugins and tools

Offers a simpler control plane and API. Complex control plane that requires more Kubernetes expertise

Architecture focuses on tasks and services. Centers around pods, deployments, and services

www.nops.io 01. ECS: The Basics 8

i. Architectural comparison

Feature/Aspect AWS ECS AWS EKS

Architecture Proprietary AWS, simpler setup Kubernetes-based, more components to manage

Ease of Use
More straightforward to set up and manage, with a
simpler user interface and fewer components to
manage. User-friendly, particularly for AWS users.

Steeper learning curve, requiring a deeper
understanding of Kubernetes. However, it offers more
flexibility and a broader range of features for complex
deployments.

Scalability Integrated with Fargate for serverless scaling
Kubernetes Kubernetes auto-scaling, more granular control

Security Integrated with AWS IAM to benefit from AWS built-in
security features

Leverages Kubernetes role-based access control
(RBAC), community-driven but equally robust security
features

Cost No additional charge for ECS, pay for resources (e.g.
EC2 instances or Fargate) used Charges for EKS control plane plus resources used

ii. Feature comparison

The takeaway is that ECS offers a more AWS-centric experience, making it a good choice for teams looking for ease of use and deep integration with
AWS services. On the other hand, EKS is ideal for teams that require the flexibility and extensive feature set of Kubernetes, along with its wide
community support.

www.nops.io 01. ECS: The Basics 9

ECS
pricing

www.nops.io 10

The first step is understanding how your ECS costs are generated and billed. There are four main billing models for ECS.

ECS pricing

www.nops.io 02. ECS pricing 11

01. ECS launch type
There is no additional cost for using ECS on AWS, beyond the regular cost of the instances used (based on EBS storage volumes, CPU, memory,
etc.), as well as any additional AWS services integrated with ECS, like Elastic Load Balancing (ELB), EBS volumes, and data transfer costs. There
are 4 common types of EC2 instance pricing:

On-Demand Instances
Let you pay for compute capacity by the hour or second (minimum of 60 seconds) with no long-term commitments. This frees you from the costs
and complexities of planning, purchasing, and maintaining hardware and transforms what are commonly large fixed costs into much smaller
variable costs.

Spot Instances
These are spare AWS capacity that users can purchase at a heavy discount (up to 90%), but AWS may terminate these instances at any time with
a 2-minute warning.

Reserved Instances
(RIs) pricing provides significant savings in exchange for a commitment of up to three years. However, it can be difficult to forecast how much
compute you will need, and you will have to pay for commitments regardless of actual usage. They are ideal for steady, predictable usage.

https://aws.amazon.com/ec2/pricing/on-demand/

www.nops.io 02. ECS pricing 12

02. Fargate
There are no upfront costs and you pay only for the resources you use. AWS Fargate pricing is calculated based on the vCPU, memory,
Operating Systems, CPU Architecture, and storage resources used from the time you start to download your container image until the Amazon
ECS Task terminates, rounded up to the nearest second. As with normal EC2 instances, you can use Fargate with AWS RI & SP commitments
or Spot.

03﻿. ECS Anywhere
Lets you run and manage container workloads on your infrastructure. The pricing model is based on the resources consumed in your on-
premises environment, such as compute and memory capacity. Use cases include meeting compliance requirements or scaling your business
without sacrificing your on-premises investments. You pay $0.01025 per hour for each managed ECS Anywhere on-premises instance.

04. AWS Outposts
Fully managed service that extends AWS infrastructure, services, APIs, and tools to customer premises. By providing local access to AWS
managed infrastructure, AWS Outposts enables customers to build and run applications on-premises using the same programming interfaces as
in AWS Regions, while using local compute and storage resources for lower latency and local data processing needs.

Saving Plans
(SPs) are more flexible than RIs, as they automatically apply to EC2 instance usage regardless of instance family, size, AZ, Region,
operating system, or tenancy, and also apply to Fargate and Lambda usage. Discounts can be slightly lower than RIs.

Key Strategies
for ECS Cost
Optimization

www.nops.io 13

The first step in controlling costs is understanding your cloud environment. Let’s discuss the essential tools and strategies for monitoring ECS
environments and best practices for managing them efficiently.

The most common ECS monitoring tools include:

www.nops.io 03. Key Strategies for ECS Cost Optimization 14

01. Monitoring

AWS CloudWatch:
CloudWatch Provides monitoring and management for
AWS cloud resources and the applications running on
AWS. Includes logs, metrics, alarms, and events. Direct
integration with ECS for monitoring CPU and memory
utilization, network, and disk metrics.

AWS CloudTrail:
AWS CloudTrail records AWS API calls for your account.
Provides a history of AWS API calls for your account,
including calls which are useful for auditing changes in
ECS services and tasks.

Third-Party Monitoring Tools:
Tools like Datadog, New Relic, and Prometheus can
integrate with ECS through APIs for additional monitoring
capabilities. Monitoring tools shown in the ECS architecture

Aspect Best Practice Tools/Strategies Used

Logging and Analysis Aggregate and analyze container logs CloudWatch Logs, ELK stack

Alarms and Notifications Set up alerts for critical metrics to monitor and control AWS costs;
receive alerts when spending exceeds predefined thresholds. CloudWatch Alarms, SNS

Cluster Health Monitor cluster resources and task health CloudWatch Metrics

Service and Task Management Optimize service definitions and tasks, implement version control and
change management processes ECS Console, AWS CLI

Security Management Regularly audit and enforce AWS IAM policies and compliance IAM, AWS Config

Resource Optimization Rightsize resources based on performance data, use cost-saving
strategies such as leveraging Spot instances CloudWatch, ECS Capacity Providers

www.nops.io 03. Key Strategies for ECS Cost Optimization 15

It’s worth noting that proper tagging of your EC2 resources is a prerequisite for proper monitoring. The benefits of a robust tagging strategy are to:

Improve visibility into your workloads
Attribute shared costs to individual teams, projects, departments, environments, and business units
Programmatically manage infrastructure
Identify underutilized resources
Investigate spikes in usage and trace them back to specific causes

Implement detailed container-level monitoring to gain insights into specific containers or services driving costs. Third-party tools
can help you filter spending by resource type, compute type, tags, and other dimensions to investigate spikes and the biggest
drivers of your cloud costs. For more information on allocating your AWS costs, you can download the complete guide.

Tip: Use Container-Level Metrics

www.nops.io 03. Key Strategies for ECS Cost Optimization 16

02. Right-Sizing ECS Resources
By analyzing historical usage and performance, you can identify and rightsize instances that are not consuming all the resources currently available
to them. Keep in mind:

Rightsize regularly.

As your dynamic usage changes, regularly assess and adjust the ECS task definitions to ensure that the allocated CPU and memory are in line with
the actual usage. Over-provisioning leads to unnecessary costs, whereas under-provisioning can affect performance.

Utilization Metrics.

The key to safe rightsizing is data. Use AWS CloudWatch, Datadog, another third-party tool or a custom engineering solution to monitor resource
utilization and identify optimization opportunities. AWS’s general rule for EC2 instances is that if your maximum CPU and memory usage is less than
40% over a four-week period, you can safely reduce capacity.

https://www.nops.io/business-contexts-overview/
https://www.nops.io/whitepaper/aws-cloud-cost-allocation-the-complete-guide/

CloudWatch metrics used for rightsizing

For extensive and specific information and best practices on how to rightsize with CloudWatch, Datadog or other metrics, check
out this free ebook.

www.nops.io 03. Key Strategies for ECS Cost Optimization 17

https://www.nops.io/whitepaper/the-definitive-guide-to-aws-rightsizing/

ECS auto scaling involves automatically adjusting the number of running ECS tasks in response to configured CloudWatch alarms. You can also
scale the underlying EC2 instances based on demand, ensuring that there are always enough resources to run tasks without over-provisioning.

AWS ECS supports various scaling strategies to ensure that applications can handle varying loads efficiently: Horizontal, Vertical, Scheduled,
Dynamic, and Predictive Scaling. Let’s talk about the differences and how to use them.

Type Definition Best suited for Best practices

Horizontal Scaling Increasing or decreasing the number of
container instances or tasks to handle the load.

Applications with variable workloads,
where the load can increase or
decrease unpredictably

Auto-scaling policies based on metrics

Vertical Scaling Changing the compute (CPU, memory) capacity
of existing instances.

Applications with predictable, stable
workloads that occasionally require
more resources

Resize instances based on steady
trends

Scheduled Scaling Scaling actions are automatically triggered
based on a specified schedule.

Workloads that have predictable load
changes, like batch processing jobs
that run at specific times

Predefine scaling actions for known
load patterns

03. Effective Auto-Scaling

General Autoscaling Strategies

Now let’s talk about some of the best practices for scaling effectively.

www.nops.io 03. Key Strategies for ECS Cost Optimization 18

Implement ECS Service Auto Scaling

Dynamic Scaling

Use ECS service auto-scaling to adjust the number of tasks automatically based on demand. Leverage EC2 to manage the scaling of the underlying
instances. Ensure instances have the necessary resources to support the maximum number of tasks you expect to run. Define scaling policies based
on CloudWatch metrics such as CPU and memory utilization.

Dynamic Scaling adjusts the number of active tasks in an ECS service automatically in response to real-time changes in demand.

01. Identify the metrics most critical for your application’s performance and stability. Common metrics include CPU utilization,
network throughput, memory usage or custom application-specific metrics.

02. Establish appropriate minimum, maximum, and desired capacity settings for your ASGs. These should align with your
anticipated workload demands, ensuring that the ASG can scale efficiently without over-provisioning.

For example, scale out (add instances) when CPU utilization exceeds a certain threshold, and scale in (remove instances) when
the utilization decreases.

One strategy to consider is adjusting settings proactively in advance of predicted changes in demand, optimizing resource
utilization and cost. We can also schedule the scaling based on the monitoring metrics where we can observe spikes and create
the ASG to scale out during certain events or times of the week.

Here are the basic steps:

www.nops.io 03. Key Strategies for ECS Cost Optimization 19

Cost-optimize this workload by scaling in during off-usage.

On the other hand, if your application has sporadic or unpredictable loads, consider using a mix of instances, possibly including burstable types
(e.g. AWS T-series) that offer baseline performance with the ability to burst.

03. Create Dynamic Scaling Policies to properly utilize your resources and maintain cost-effective performance as your usage changes. In the
AWS Management Console, go to the Auto Scaling service. Define policies for scaling out and scaling in based on the CloudWatch alarms.
Configure your ASG to actively adjust its capacity in anticipation of idle or loading windows, i.e. periods of low and high demand. You’ll need to
regularly review historical data in CloudWatch to fine-tune your scaling policies continually.

04. Configure Scaling Actions: This may include adjusting the desired capacity, minimum and maximum instance counts, and cooldown periods
that prevent rapid scaling events in response to fluctuations, ensuring stability.

www.nops.io 03. Key Strategies for ECS Cost Optimization 20

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html

Steps 3 & 4: Create dynamic scaling policies and configure
scaling actions based on CloudWatch metrics

www.nops.io 03. Key Strategies for ECS Cost Optimization 21

Predictive Scaling
Predictive scaling works by analyzing historical load data (e.g. via Amazon CloudWatch Integration) to detect daily or weekly patterns in traffic flows.

It uses this information to forecast future capacity needs, automatically scheduling scaling actions to proactively increase the capacity of your Auto
Scaling group to match the anticipated load ahead of expected demand spikes.

Ensure sufficient historical data (typically at least 30 days) is available for accurate predictions.1.

Combine predictive scaling with dynamic scaling to handle unexpected surges in demand2.

Regularly review predictive scaling decisions and adjust as necessary based on actual demand patterns.3.

Some best practices include:

Let’s summarize the differences between the above strategies:

Scaling Type Trigger Best For Considerations

Dynamic Real-time metrics (e.g., CPU load) Unpredictable workloads Requires fine-tuning of metrics and thresholds

Predictive Historical data analysis Predictable, significant fluctuations in
load

Depends on quality and quantity of historical
data

Scheduled Predefined times Known events or maintenance windows Must be manually set and adjusted as patterns
change

www.nops.io 03. Key Strategies for ECS Cost Optimization 22

Container packing.

Implement task placement strategies that optimize the packing of containers in each EC2 instance to maximize resource
utilization. Strategies like 'binpack' and 'spread' can optimize resource utilization and availability. You can increase container
density on each instance as long as it doesn't compromise performance.

i. Binpack

Tasks are placed on container instances to leave the least amount of unused CPU or memory. When this strategy is used and
a scale-in action is taken, Amazon ECS terminates tasks. It does this based on the amount of resources that are left on the
container instance after the task is terminated. The container instance that has the most available resources left after task
termination has that task terminated.

ii. Spread

Tasks are placed evenly based on the specified value. Accepted values are instanceId (or host, which has the same effect), or
any platform or custom attribute that's applied to a container instance, such as attribute:ecs.availability-zone. Service tasks are
spread based on the tasks from that service.

www.nops.io 03. Key Strategies for ECS Cost Optimization 23

Additional quick tips for effective scaling

Stop instances used in development and production during hours when these instances are not in use. Assuming a 50-hour work week, you can save
70% by automatically stopping dev/test/production instances during non-business hours.

04. Scheduling resources

Scheduling Tools
Include Amazon EC2 Scheduler, AWS Lambda, and AWS Data Pipeline. Or, third-party tools such as nOps Scheduler use AI to learn your usage
patterns, identify the hours when an instance is not needed, and implement recommendations with a single-click.

You can read further about
how to schedule resources
with this dedicated guide.

www.nops.io 03. Key Strategies for ECS Cost Optimization 24

https://www.nops.io/cloud-optimization-essentials/
https://www.nops.io/optimize-your-cost-by-scheduling-idle-resources/

Reserved Instances (RI) and Savings Plans (SP) offer lower prices than On-Demand pricing in exchange for a specific usage commitment.
However, forecasting commitments is an art as dynamic usage continually fluctates. If you commit too heavily, every hour you’re paying for unused
capacity. But if you under-commit, you’ll have to pay the On-Demand premium for additional resources.

Here is a quick comparison of different commitment options to consider.

05. Optimizing your commitments

Standard Reserved
Instances

Convertible Reserved
Instances

EC2 Instances Savings
Plans Compute Savings Plans

Applicable to EC2 only EC2 only EC2 only EC2, Lambda, & Fargate

Commitment term 1 year, 3 years 1 year, 3 years 1 year, 3 years 1 year, 3 years

Best case scenario
savings

75% 54% 72% 66%

Payment Options All Upfront, Partial Upfront, and
No Upfront

All Upfront, Partial Upfront,
and No Upfront

All Upfront, Partial Upfront,
and No Upfront

All Upfront, Partial Upfront,
and No Upfront

Instance Family Fixed Any Fixed Any

Instance Size Fixed, except for regional
scopes that use Linux/Unix Any Any Any

Instance Operating
System

Fixed Any Any Any

www.nops.io 03. Key Strategies for ECS Cost Optimization 25

Standard Reserved
Instances

Convertible Reserved
Instances

EC2 Instances Savings
Plans Compute Savings Plans

Instance AZ Any (Regional), Fixed (Zonal) Any Any Any

Instance Tenancy Fixed Any Any Any

Need to reserve
capacity?

Any (Regional), Fixed (Zonal) No No No

Here are some quick tips:

Understand what is, and what isn’t, covered by a Savings Plan. Savings Plans don’t cover everything — they cover EC2 Compute, Fargate,
and Lambda. They do not cover non-compute elements such as EBS volumes or data transfer.

1.

Analyze your On-Demand spend on an hourly basis. Savings Plans and Reserved Instances apply on an hourly basis, meaning that you’ll
need to get fairly granular in your breakdown. They operate on a “use it or lose it” basis, meaning that if you commit to $10 per hour but only
consume $6 of services in any hour, you will lose the remaining $4. That’s why it is critical to monitor usage of commitments continually.

2.

Recognize that Savings Plans don’t normally cover spikes. Savings Plans are ideal for a steady and predictable compute spend level. You’ll
commit to using the agreed capacity per hour. If you exceed this usage, AWS will use On-Demand billing for extra charges.

3.

Understand how commitments are applied. Savings Plans and RIs are applied in the following order:4.
Standard Reserved Instancesa.
Convertible Reserved Instancesb.
EC2 Savings Plansc.
Compute Savings Plans: For advantages and disadvantages of the various SP and RI options, as well as practical use cases and best
practices for squeezing more out of commitments, check out our recent ebook The Ultimate Guide to AWS Commitments.

d.

www.nops.io 03. Key Strategies for ECS Cost Optimization 26

https://www.nops.io/whitepaper/the-ultimate-guide-to-aws-commitments/

If you’re looking to save on ECS, Spot is key to reducing cost. Spot Instances allow users to take advantage of unused EC2 capacity at a fraction of
the standard On-Demand price.

06. Spot Instances and Fargate Spot

Instance Type Spot vs. On-Demand Savings Expected Savings

General Purpose Up to 90% cheaper than On-Demand Very High

Compute Optimized Up to 80% cheaper than On-Demand High

Memory Optimized Up to 75% cheaper than On-Demand Moderate to High

However, they can be reclaimed by AWS with just a 2-minute warning if there’s higher demand for the capacity. This characteristic introduces a few
risks and considerations that need to be managed carefully:

Service Interruption: The most direct risk is the potential for service interruption. If AWS reclaims Spot Instances, any containers running on
those instances will be stopped, which disrupts running services or batch jobs if not properly managed.

Task Interruptions and Failures: For ECS tasks that are stateful or require longer processing times, interruptions can lead to incomplete
transactions or data corruption if not properly handled.

Increased Management Overhead: To effectively use Spot Instances, you need to implement more sophisticated management strategies such
as including handling instance interruptions, increasing the complexity of your infrastructure.

Variable Costs: While Spot Instances can offer significant cost savings, market prices continually fluctuate based on demand. If not monitored
and controlled, costs can potentially spike.

www.nops.io 03. Key Strategies for ECS Cost Optimization 27

Best Practices for Using Spot Instances with ECS

01. Analyze the suitability of your application.

Stateless, fault-tolerant, or flexible applications are ideal candidates for Spot. Implement a robust failover strategy using ECS service auto-scaling to
maintain application availability and regularly test the resilience of your ECS environment on Spot Instances to ensure that it can handle instance
interruptions gracefully.

02. Use ECS Capacity Providers with Spot Fleet Integration.

Capacity providers are used to manage the infrastructure on which ECS tasks are run. They can be set up to use a mix of On-Demand and Spot
Instances. You’ll need to use a capacity provider strategy that prioritizes Spot Instances but falls back on On-Demand Instances when needed.

Spot Fleets manage a collection of Spot Instances and optionally On-Demand Instances to meet a certain capacity target. You can combine Spot
Fleets with ECS to manage instances and scale capacity efficiently.

Spot Fleet has the ability to mix instance types and sizes to optimize cost and maintain availability, and you can configure Spot Fleet to replace
terminated instances automatically.

www.nops.io 03. Key Strategies for ECS Cost Optimization 28

Capacity Availability: Spot Instance market availability varies and might not always be able to match the scale or specific instance types/sizes
your applications require, leading to potential scaling limitations.

However, with the right techniques, you can successfully utilize AWS Spot Instances in conjunction with ECS to significantly reduce costs while
maintaining performance and reliability.

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-capacity-providers.html

03. Implement Spot Instance
Diversification

Rather than relying on a single instance type, diversify your Spot
Instances across various instance types and availability zones.
This strategy reduces the impact of sudden market fluctuations
on your workload.

When it comes to critical applications, you want to always
maintain a core base capacity of On-Demand instances to
ensure they remain unaffected by interruptions in the event that
no suitable Spot is available.

04. Implementing Spot Instance Draining

Use ECS’s managed instance draining feature to gracefully
handle Spot Instance terminations by stopping tasks on the
instance and rescheduling them on other instances. Monitor
Spot Instance advisories and trigger the draining process
automatically.

www.nops.io 03. Key Strategies for ECS Cost Optimization 29

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/managed-instance-draining.html

05. Use Spot Placement Scores

To better understand the market conditions for your selected instance
types you can use Spot Placement Scores provided by AWS.

However, it’s worth noting understanding and interpreting placement
scores accurately demands a deep understanding of how AWS
calculates these scores and their implications on Spot instance
availability.

Incorporating Spot placement scores into auto-scaling strategies
adds complexity, because you need to balance cost, performance,
and availability. Changing Spot market pricing and availability means
users must continuously monitor and react quickly to score changes
to optimize their Spot instance use.

Failing to do so properly can result in a volatile Spot instance
environment, leading to application downtime, data loss or corruption,
and increased overhead due to operational challenges. And if you
don’t pick the right Spot instances, you might actually spend more for
your trouble.

If these challenges sound familiar, nOps Compute Copilot can help.
Just simply integrate it with EC2, ASG, EKS, Batch or other compute-
based workload and let nOps handle the rest.

www.nops.io 03. Key Strategies for ECS Cost Optimization 30

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-placement-score.html
https://www.nops.io/compute-copilot/

About
nOps

www.nops.io 31

nOps offers proprietary AI-driven management of instances for the best price in real time. It continually analyzes market pricing and your existing
commitments to ensure you are always on the best blend of Spot, Reserved, and On-Demand, gracefully replacing nodes before termination.

Here are the key benefits of delegating the hassle of cost optimization to nOps.

Hands free. Copilot automatically selects the optimal instance types for your EC2 or other workloads, freeing up your time to focus on
building and innovating.

Cost savings. Copilot ensures you are always on the most cost-effective and stable Spot options.

Enterprise-grade SLAs for the highest standards of reliability. Run production and mission-critical workloads on Spot with complete
confidence.

No vendor-lock in. Just plug in your AWS-native ECS to start saving effortlessly, and change your mind at any time.

No upfront cost. You pay only a percentage of your realized savings, making adoption risk-free.

www.nops.io 06. About nOps 32

nOps manages over $1.5 billion in cloud spend and was recently ranked #1 in G2’s cloud cost management category.
Join our customers using nOps to slash your cloud costs and leverage automation with complete confidence by booking
a demo today!

https://www.nops.io/get-started/
https://www.nops.io/get-started/

